Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714.
نویسندگان
چکیده
Isopentenyl diphosphate, the universal isoprenoid precursor, can be produced by two different biosynthetic routes: either via the acetate/mevalonate (MVA) pathway, or via the more recently identified MVA-independent glyceraldehyde phosphate/pyruvate pathway. These two pathways are easily differentiated by incorporation of [1-13C]glucose and analysis of the resulting labelling patterns found in the isoprenoids. This method was successfully applied to several unicellular algae raised under heterotrophic growth conditions and allowed for the identification of the pathways that were utilized for isoprenoid biosynthesis. All isoprenoids examined (sterols, phytol, carotenoids) of the green algae Chlorella fusca and Chlamydomonas reinhardtii were synthesized via the GAP/pyruvate pathway, as in another previously investigated green alga, Scenedesmus obliquus, which was also shown in this study to synthesize ubiquinone by the same MVA-independent route. In the red alga Cyanidium caldarium and in the Chrysophyte Ochromonas danica a clear dichotomy was observed: as in higher plants, sterols were formed via the MVA route, whereas chloroplast isoprenoids (phytol in Cy. caldarium and O. danica and beta-carotene in O. danica) were synthesized via the GAP/pyruvate route. In contrast, the Euglenophyte Euglena gracilis synthesized ergosterol, as well as phytol, via the acetate/MVA route. Similar feeding experiments were performed with the cyanobacterium Synechocystis PCC 6714 using [1-13C]- and [6-13C]-glucose. The two isoprenoids examined, phytol and beta-carotene, were shown to have the typical labelling pattern derived from the GAP/pyruvate route.
منابع مشابه
The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants.
1 Isoprenoid biosynthesis 1.1 The mevalonate route to isopentenyl diphosphate 1.2 Isoprenoid biosynthesis in higher plants: some contradictions with the mevalonate pathway 2 The discovery of the mevalonate-independent pathway 2.1 The origin of the discovery: the biosynthesis of bacterial hopanoids 2.2 The origin of the carbon atoms of isoprenic units in the mevalonate-independent pathway 2.3 d-...
متن کاملIsoprenoid biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the pentose phosphate cycle but not by pyruvate or deoxyxylulose-5-phosphate.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate,...
متن کاملThe mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids*
A mevalonate-independent route to isopentenyl diphosphate (IPP), the universal precursor of isoprenoids, is present in many bacteria, in some unicellular green algae and in the plant plastids. All essential isoprenoids related to photosynthesis, including the carotenoids, are synthesized via this alternative metabolic route. IPP is formed from pyruvate and glyceraldehyde 3-phosphate via 1-deoxy...
متن کاملFinished Genome Sequence of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6714
Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.
متن کاملInactivation of sll1556 in Synechocystis strain PCC 6803 impairs isoprenoid biosynthesis from pentose phosphate cycle substrates in vitro.
In cyanobacteria many compounds, including chlorophylls, carotenoids, and hopanoids, are synthesized from the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate. Isoprenoid biosynthesis in extracts of the cyanobacterium Synechocystis strain PCC 6803 grown under photosynthetic conditions, stimulated by pentose phosphate cycle substrates, does not appear to require ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 333 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1998